
ITECH1400 – Foundations of Programming – SEM2/18

School of Science, Engineering and Information Technology

CRICOS Provider No. 00103D Page 1 of 7

ITECH1400 - Assignment 1 – Supermarket Self-Service Checkout

Due Date: 5pm, Friday of Week 7

This assignment will test your skills in designing and programming applications to specification and is worth
20% of your non-invigilated (type A) marks for this course. This is an INDIVIDUAL ASSIGNMENT – and while
you may discuss it with your fellow students, you must not share designs or code or you will be in breach of
the university plagiarism rules. This assignment should take you approximately 20 hours to complete.

Assignment Overview

You are tasked with creating a text-based program for simulating a supermarket self-service checkout using
the Python 3 programming language.

The assignment is broken up into four main
components:

1.) Design and model two classes: Product
and CheckoutRegister,

2.) Create an activity chart which describes
the behaviour of the checkout system,

3.) Create a computer program that allows
a user to interactively check out a
number of products, then provides an
opportunity to enter some virtual money to pay for the products and finally and prints out a receipt for
the user (to the screen, not on paper), and finally

4.) Explain and integrate some code into your checkout program that places the products purchased into
virtual shopping bags.

Your submission should consist of one Microsoft Word or LibreOffice document containing the first two parts
of the assignment, and three Python scripts that implement the computer program (checkoutregister.py,
product.py and main.py).

The main.py script runs the main logic of the program and will use instances of the CheckoutRegister and
Product classes to simulate checking out of the supermarket.

You are provided with a Microsoft Word template to help you complete the first two parts of this assignment.

Towards the end of this document you will also be provided with the output of a simulated run of the completed
computer program which may help you with this assignment.

ITECH1400 – Foundations of Programming – SEM2/18

School of Science, Engineering and Information Technology

CRICOS Provider No. 00103D Page 2 of 7

Assignment Part 1 Details – Class Design

Think of a product that you can buy from a supermarket, like maybe a can of soup or an apple.

Start by listing all the properties of that object that you can think of – try to come up with at least ten general
properties of a Product and write these down in your Assignment_Part_1_<YOUR_STUDENT_ID> Microsoft
Word document.

Next, use the process of abstraction to cut the number of properties back to only four ‘key’ properties – write
these down in the next section of your Word document. Take a look at the week 2 lecture slides if you need a
reminder on how to go about this.

Now, fill in the class diagram for your Product class in the Word document template provided. Your product
class does not have to have any methods (i.e. functions) associated with it to perform any actions other than a
constructor which takes and set the four key properties that you’ve identified.

Next we’ll move on to CheckoutRegister class – think about what information the checkout has to keep track
of to allow you to successfully check out of the supermarket. There will only really be three key properties that
the CheckoutRegister cares about, and the CheckoutRegister class should have the following four methods
available:

1) A default constructor that takes no arguments and initialises a new object and its properties,
2) accept_payment(some_amount),
3) scan_item(some_product), and
4) print_receipt().

Fill in the class diagram for the CheckoutRegister class in the Word template, and that’s the first part completed!

Assignment Part 2 Details – Activity Flowchart

Using either the online website https://draw.io (preferred), or the applications Visio or Powerpoint – create an
activity diagram of how the program should operate to successfully scan one or more products, accept payment,
provide change and print a receipt for the user.

Make sure to use the correct symbols in your diagram for starting, processes, decisions/branches, and ending
the process.

Although you should be familiar with how a self-checkout works, if not then you can always go to a local
supermarket with a self-checkout and buy a packet of chewing gum or something – or take a look at a YouTube
video of self-service checkout, such as this one: https://www.youtube.com/watch?v=hoyqVvHaL4s.

Don’t worry about loyalty/rewards cards to taking payment through debit or credit cards, our CheckoutRegister
will only accept cash – although you can enter multiple denominations via multiple calls to the
accept_money(some_amount) method. For example, calling accept_money(5.0) and then accept_money(2.0)
will mean that the CheckoutRegister knows that you have entered a total of $7.00. Also note that you can start
the entire checkout process off by simply scanning a product.

Once you have completed your activity flowchart, add it to your assignment template document.

https://draw.io/
https://www.youtube.com/watch?v=hoyqVvHaL4s

ITECH1400 – Foundations of Programming – SEM2/18

School of Science, Engineering and Information Technology

CRICOS Provider No. 00103D Page 3 of 7

Assignment Part 3 Details – Software Implementation

You are free to implement the software however you see fit, however the functionality of the software should
be able to match the following output. Note that in the below run of the program I have ‘hard-coded’ a small
number of Product instances so that products exist which can they can be checked out – in your code you should
do the same.

Your program does not have to have the facility to add new products – just define a few and use them as
demonstrated below. If the final option of (N)ext customer is chosen, the program should run again

Example Program Output

----- Welcome to FedUni checkout! -----

Please enter the barcode of your item: 123

Milk, 2 Litres - $2.0

Would you like to scan another product? (Y/N) y

Please enter the barcode of your item: 456

Bread - $3.5

Would you like to scan another product? (Y/N) y

Please enter the barcode of your item: 999

This product does not exist in our inventory.

Would you like to scan another product? (Y/N) n

Payment due: $5.5. Please enter an amount to pay: 5

Payment due: $0.5. Please enter an amount to pay: -3

We don't accept negative money!

Payment due: $0.5. Please enter an amount to pay: 2

----- Final Receipt -----

Milk, 2 Litres $2.0

Bread $3.5

Total amount due: $5.5

Amount received: $7.0

Change given: $1.5

Thank you for shopping at FedUni!

(N)ext customer, or (Q)uit? q

>>>

ITECH1400 – Foundations of Programming – SEM2/18

School of Science, Engineering and Information Technology

CRICOS Provider No. 00103D Page 4 of 7

Part 4 – Code Explanation and Use

You are provided with the following two functions which you should

1. Analyse to determine what they do & provide documentation comments for, and

2. Incorporate into your final program solution.

Wherever there is a # followed by some underscores in the code below, you should write a short comment

explaining what the below section of code is doing, and if there is space why it is doing it. Do part 1 of the

above in the provided assignment 1 template document, rather than here!

Function to: ___________________________

def get_float(prompt):

 # ____________________________________

 value = float(0.0)

 # ____________________________________

 while True:

 try:

 # ____________________________________

 value = float(input(prompt))

 # ____________________________________

 if value < 0.0:

 print("We don't accept negative money!")

 continue

 # ____________________________________

 break

 # ____________________________________

 except ValueError:

 print('Please enter a valid floating point value.')

 # ____________________________________

 return value

Function to: ___________________________

def bag_products(product_list):

 # ____________________________________

 bag_list = []

 non_bagged_items = []

 MAX_BAG_WEIGHT = 5.0

 # ____________________________________

 for product in product_list:

ITECH1400 – Foundations of Programming – SEM2/18

School of Science, Engineering and Information Technology

CRICOS Provider No. 00103D Page 5 of 7

 # ____________________________________

 if product.weight > MAX_BAG_WEIGHT:

 product_list.remove(product)

 non_bagged_items.append(product)

 # ____________________________________

 current_bag_contents = []

 current_bag_weight = 0.0

 # ____________________________________

 while len(product_list) > 0:

 # ____________________________________

 temp_product = product_list[0]

 product_list.remove(temp_product)

 # ____________________________________

 if current_bag_weight + temp_product.weight <= MAX_BAG_WEIGHT:

 # ____________________________________

 current_bag_contents.append(temp_product)

 current_bag_weight += temp_product.weight

 # ____________________________________

 else:

 bag_list.append(current_bag_contents)

 # ____________________________________

 current_bag_contents = [temp_product]

 current_bag_weight = temp_product.weight

 # ____________________________________

 if (len(product_list) == 0):

 bag_list.append(current_bag_contents)

 # ____________________________________

 for index, bag in enumerate(bag_list):

 output = 'Bag ' + str(index + 1) + ' contains: '

 # ____________________________________

 for product in bag:

 output += product.name + '\t'

 print(output, '\n')

 # ____________________________________

 if (len(non_bagged_items) > 0):

 output = 'Non-bagged items: '

 # ____________________________________

 for item in non_bagged_items:

 output += item.name + '\t'

 print(output,'\n')

ITECH1400 – Foundations of Programming – SEM2/18

School of Science, Engineering and Information Technology

CRICOS Provider No. 00103D Page 6 of 7

Submission and Marking Process

You must supply your program source code files and your document containing the first two section of the
assignment as a single compressed archive called:

ITECH1400_Assignment_1_<YOUR-NAME>_<YOUR-STUDENT-ID>.zip

Obviously replace <YOUR-NAME> and <YOUR-STUDENT-ID) with your own personal details! You may supply
your word processed documentation in either Microsoft Word or LibreOffice/OpenOffice formats only – no
proprietary Mac specific formats, please.

Assignments will be marked on the basis of fulfilment of the requirements and the quality of the work. In
addition to the marking criteria, marks may be deducted for failure to comply with the assignment
requirements, including (but not limited to):

• Incomplete implementation(s), and

• Incomplete submissions (e.g. missing files), and

• Poor spelling and grammar.

Submit your assignment (all program source files plus your word processed document) to the Assignment 1
Upload location on Moodle before the deadline of Friday of week 7 at 5pm.

The mark distribution for this assignment is explained on the next page – please look at it carefully and compare
your submission to the marking guide.

ITECH1400 – Foundations of Programming – SEM2/18

School of Science, Engineering and Information Technology

CRICOS Provider No. 00103D Page 7 of 7

Assignment 1 – FedUni Checkout

Student name: Student ID:

Part Assessment Criteria Weight Mark

1a Identification of properties of a typical supermarket Product. 10 * 0.5 = 5

marks

1b Application of abstraction to identify key properties of a typical supermarket

Product as well as creation of a suitable Class Diagram.

4 marks

1c Identification of the key properties of a CheckoutRegister as well as creation

of a suitable Class Diagram which uses those properties, plus the four

method signatures provided.

4 marks

2 Creation of an activity flowchart which clearly indicates how the program

should operate, using the correct symbols for elements such as start/end

points, processes and decisions/branches

10 marks

3 Programming of the product checkout simulation so that it:

i) Creates a small number of Product instances that may be purchased,

ii) Accepts simulated ‘scanning’ of a Product to identify it (including refusal

to identify products which do not exist),

iii) Adds a scanned Product to the CheckoutRegister’s list of products

being purchased,

iv) Allows the checkout of multiple products,

v) Accepts ‘virtual money’ to pay for those products (you must pay enough to

cover the cost of the items checked out), and

vi) Prints a final receipt of the products purchased, along with the total cost,

total paid and any change given.

5 + 5 + 5 +

5 + 5 + 5 =

30 marks.

i)

ii)

iiI)

iv)

v)

vi)

Total:

4a Analysis and documentation via code comments of the two functions

provided.

(8 * 0.5) +

(16 * 0.5) =

12 marks

4b Incorporation of the two functions provided into your main submission so that

the program does not crash when an illegal money value is provided, and

also virtually ‘bags up’ the products purchased.

2

 Assignment total (out of 65 marks)

 Contribution to grade (out of 20 marks)

Comments:

